skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cordero, Raul_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Clouds and radiation play an important role in warming events over the Southern Ocean (SO). Here we evaluate European Center for Medium‐Range Weather Forecasts Reanalysis version 5 (ERA5) and Polar Weather Research Forecast (PWRF) output through comparison to surface‐based measurements of clouds, radiation, and the atmospheric state over the SO during 2017–2023 at Escudero Station (62.2°S, 58.97°W) on King George Island. ERA5 mean monthly downward shortwave (DSW) radiative fluxes are found to be 38–50 W m−2higher than observations in summer, whereas ERA5 mean monthly downward longwave (DLW) is biased by −18 to −22 W m−2in summer and −16 W m−2on average over the year. Comparisons of temperature, humidity, and lowest‐cloud base heights between ERA5 and observations rule these factors out as large contributors to the DLW flux biases. The similarity between observed DLW cloud forcing distributions for atmospheric columns containing low‐level liquid and ice‐only clouds suggests limited influence of cloud phase errors on DLW biases. Thus the most likely explanation for DLW flux biases in ERA5 is underestimated cloud optical depth, which is also consistent with DSW flux biases. Similar biases in ERA5 are found during atmospheric river (AR) events. By contrast, PWRF flux bias magnitudes are much smaller during AR events (−12 W m−2for DSW and −2 W m−2for DLW). After bias correction, ERA5 monthly average net cloud forcing over 2017–2023 is found to be a minimum of −107 W m−2in January and a maximum of 65 W m−2in June. 
    more » « less
  2. Abstract The Antarctica Peninsula (AP) has experienced more frequent and intense surface melting recently, jeopardizing the stability of ice shelves and ultimately leading to ice loss. Among the key phenomena that can initiate surface melting are atmospheric rivers (ARs) and leeside foehn; the combined impact of ARs and foehn led to moderate surface warming over the AP in December 2018 and record‐breaking surface melting in February 2022. Focusing on the more intense 2022 case, this study uses high‐resolution Polar WRF simulations with advanced model configurations, Reference Elevation Model of Antarctica topography, and observed surface albedo to better understand the relationship between ARs and foehn and their impacts on surface warming. With an intense AR (AR3) intrusion during the 2022 event, weak low‐level blocking and heavy orographic precipitation on the upwind side resulted in latent heat release, which led to a more deep‐foehn like case. On the leeside, sensible heat flux associated with the foehn magnitude was the major driver during the night and the secondary contributor during the day due to a stationary orographic gravity wave. Downward shortwave radiation was enhanced via cloud clearance and dominated surface melting during the daytime, especially after the peak of the AR/foehn events. However, due to the complex terrain of the AP, ARs can complicate the foehn event by transporting extra moisture to the leeside via gap flows. During the peak of the 2022 foehn warming, cloud formation on the leeside hampered the downward shortwave radiation and slightly increased the downward longwave radiation. 
    more » « less